If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x=600
We move all terms to the left:
2x^2+20x-(600)=0
a = 2; b = 20; c = -600;
Δ = b2-4ac
Δ = 202-4·2·(-600)
Δ = 5200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5200}=\sqrt{400*13}=\sqrt{400}*\sqrt{13}=20\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{13}}{2*2}=\frac{-20-20\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{13}}{2*2}=\frac{-20+20\sqrt{13}}{4} $
| 19^3k=33 | | 3(4x+5=33 | | 8x+88=789999x+8888 | | 2x^2-4x=37 | | x3+2=5 | | 34n−16=14−12n | | -2z=6−z | | 8^3x-3=13^x-1 | | 6=4x-4 | | 7(a-8)=-56+7a | | -104=8*x | | 77=x | | s13=4 | | 2x+6=6x2 | | 6(3t-1)+5t=12-t | | 3x+55+x+x=22222222222222222222222222222222222222222666666666678909876543456789098765434567890987654323456789876789087678765 | | 2(11x^2-60x+81)=0 | | x-(.20x)=25823.20 | | 15=l+21 | | 6=-2/3+v | | -40=3e+5e | | 8x+94x−3=0 | | 1/4n+12=12 | | (r-8)r+5)=0 | | 6h^2+7h+1=0 | | 10=-2g-3g | | x90=8+x+89+34x | | 2*1=-y+4 | | -5×=4+3c | | 5•(8x-5)•(x-2)=0 | | H=-16t^2+153t+90 | | x-6=8x+15 |